home *** CD-ROM | disk | FTP | other *** search
- *
- ************************************************************************
- *
- SUBROUTINE CTPMV ( UPLO, TRANS, DIAG, N, AP, X, INCX )
- * .. Scalar Arguments ..
- INTEGER INCX, N
- CHARACTER*1 DIAG, TRANS, UPLO
- * .. Array Arguments ..
- COMPLEX AP( * ), X( * )
- * ..
- *
- * Purpose
- * =======
- *
- * CTPMV performs one of the matrix-vector operations
- *
- * x := A*x, or x := A'*x, or x := conjg( A' )*x,
- *
- * where x is an n element vector and A is an n by n unit, or non-unit,
- * upper or lower triangular matrix, supplied in packed form.
- *
- * Parameters
- * ==========
- *
- * UPLO - CHARACTER*1.
- * On entry, UPLO specifies whether the matrix is an upper or
- * lower triangular matrix as follows:
- *
- * UPLO = 'U' or 'u' A is an upper triangular matrix.
- *
- * UPLO = 'L' or 'l' A is a lower triangular matrix.
- *
- * Unchanged on exit.
- *
- * TRANS - CHARACTER*1.
- * On entry, TRANS specifies the operation to be performed as
- * follows:
- *
- * TRANS = 'N' or 'n' x := A*x.
- *
- * TRANS = 'T' or 't' x := A'*x.
- *
- * TRANS = 'C' or 'c' x := conjg( A' )*x.
- *
- * Unchanged on exit.
- *
- * DIAG - CHARACTER*1.
- * On entry, DIAG specifies whether or not A is unit
- * triangular as follows:
- *
- * DIAG = 'U' or 'u' A is assumed to be unit triangular.
- *
- * DIAG = 'N' or 'n' A is not assumed to be unit
- * triangular.
- *
- * Unchanged on exit.
- *
- * N - INTEGER.
- * On entry, N specifies the order of the matrix A.
- * N must be at least zero.
- * Unchanged on exit.
- *
- * AP - COMPLEX array of DIMENSION at least
- * ( ( n*( n + 1 ) )/2 ).
- * Before entry with UPLO = 'U' or 'u', the array AP must
- * contain the upper triangular matrix packed sequentially,
- * column by column, so that AP( 1 ) contains a( 1, 1 ),
- * AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
- * respectively, and so on.
- * Before entry with UPLO = 'L' or 'l', the array AP must
- * contain the lower triangular matrix packed sequentially,
- * column by column, so that AP( 1 ) contains a( 1, 1 ),
- * AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
- * respectively, and so on.
- * Note that when DIAG = 'U' or 'u', the diagonal elements of
- * A are not referenced, but are assumed to be unity.
- * Unchanged on exit.
- *
- * X - COMPLEX array of dimension at least
- * ( 1 + ( n - 1 )*abs( INCX ) ).
- * Before entry, the incremented array X must contain the n
- * element vector x. On exit, X is overwritten with the
- * tranformed vector x.
- *
- * INCX - INTEGER.
- * On entry, INCX specifies the increment for the elements of
- * X. INCX must not be zero.
- * Unchanged on exit.
- *
- *
- * Level 2 Blas routine.
- *
- * -- Written on 22-October-1986.
- * Jack Dongarra, Argonne National Lab.
- * Jeremy Du Croz, Nag Central Office.
- * Sven Hammarling, Nag Central Office.
- * Richard Hanson, Sandia National Labs.
- *
- *
- * .. Parameters ..
- COMPLEX ZERO
- PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
- * .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I, INFO, IX, J, JX, K, KK, KX
- LOGICAL NOCONJ, NOUNIT
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * .. External Subroutines ..
- EXTERNAL XERBLA
- * .. Intrinsic Functions ..
- INTRINSIC CONJG
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters.
- *
- INFO = 0
- IF ( .NOT.LSAME( UPLO , 'U' ).AND.
- $ .NOT.LSAME( UPLO , 'L' ) )THEN
- INFO = 1
- ELSE IF( .NOT.LSAME( TRANS, 'N' ).AND.
- $ .NOT.LSAME( TRANS, 'T' ).AND.
- $ .NOT.LSAME( TRANS, 'C' ) )THEN
- INFO = 2
- ELSE IF( .NOT.LSAME( DIAG , 'U' ).AND.
- $ .NOT.LSAME( DIAG , 'N' ) )THEN
- INFO = 3
- ELSE IF( N.LT.0 )THEN
- INFO = 4
- ELSE IF( INCX.EQ.0 )THEN
- INFO = 7
- END IF
- IF( INFO.NE.0 )THEN
- CALL XERBLA( 'CTPMV ', INFO )
- RETURN
- END IF
- *
- * Quick return if possible.
- *
- IF( N.EQ.0 )
- $ RETURN
- *
- NOCONJ = LSAME( TRANS, 'T' )
- NOUNIT = LSAME( DIAG , 'N' )
- *
- * Set up the start point in X if the increment is not unity. This
- * will be ( N - 1 )*INCX too small for descending loops.
- *
- IF( INCX.LE.0 )THEN
- KX = 1 - ( N - 1 )*INCX
- ELSE IF( INCX.NE.1 )THEN
- KX = 1
- END IF
- *
- * Start the operations. In this version the elements of AP are
- * accessed sequentially with one pass through AP.
- *
- IF( LSAME( TRANS, 'N' ) )THEN
- *
- * Form x:= A*x.
- *
- IF( LSAME( UPLO, 'U' ) )THEN
- KK = 1
- IF( INCX.EQ.1 )THEN
- DO 20, J = 1, N
- IF( X( J ).NE.ZERO )THEN
- TEMP = X( J )
- K = KK
- DO 10, I = 1, J - 1
- X( I ) = X( I ) + TEMP*AP( K )
- K = K + 1
- 10 CONTINUE
- IF( NOUNIT )
- $ X( J ) = X( J )*AP( KK + J - 1 )
- END IF
- KK = KK + J
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40, J = 1, N
- IF( X( JX ).NE.ZERO )THEN
- TEMP = X( JX )
- IX = KX
- DO 30, K = KK, KK + J - 2
- X( IX ) = X( IX ) + TEMP*AP( K )
- IX = IX + INCX
- 30 CONTINUE
- IF( NOUNIT )
- $ X( JX ) = X( JX )*AP( KK + J - 1 )
- END IF
- JX = JX + INCX
- KK = KK + J
- 40 CONTINUE
- END IF
- ELSE
- KK = ( N*( N + 1 ) )/2
- IF( INCX.EQ.1 )THEN
- DO 60, J = N, 1, -1
- IF( X( J ).NE.ZERO )THEN
- TEMP = X( J )
- K = KK
- DO 50, I = N, J + 1, -1
- X( I ) = X( I ) + TEMP*AP( K )
- K = K - 1
- 50 CONTINUE
- IF( NOUNIT )
- $ X( J ) = X( J )*AP( KK - N + J )
- END IF
- KK = KK - ( N - J + 1 )
- 60 CONTINUE
- ELSE
- KX = KX + ( N - 1 )*INCX
- JX = KX
- DO 80, J = N, 1, -1
- IF( X( JX ).NE.ZERO )THEN
- TEMP = X( JX )
- IX = KX
- DO 70, K = KK, KK - ( N - ( J + 1 ) ), -1
- X( IX ) = X( IX ) + TEMP*AP( K )
- IX = IX - INCX
- 70 CONTINUE
- IF( NOUNIT )
- $ X( JX ) = X( JX )*AP( KK - N + J )
- END IF
- JX = JX - INCX
- KK = KK - ( N - J + 1 )
- 80 CONTINUE
- END IF
- END IF
- ELSE
- *
- * Form x := A'*x or x := conjg( A' )*x.
- *
- IF( LSAME( UPLO, 'U' ) )THEN
- KK = ( N*( N + 1 ) )/2
- IF( INCX.EQ.1 )THEN
- DO 110, J = N, 1, -1
- TEMP = X( J )
- K = KK - 1
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*AP( KK )
- DO 90, I = J - 1, 1, -1
- TEMP = TEMP + AP( K )*X( I )
- K = K - 1
- 90 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*CONJG( AP( KK ) )
- DO 100, I = J - 1, 1, -1
- TEMP = TEMP + CONJG( AP( K ) )*X( I )
- K = K - 1
- 100 CONTINUE
- END IF
- X( J ) = TEMP
- KK = KK - J
- 110 CONTINUE
- ELSE
- JX = KX + ( N - 1 )*INCX
- DO 140, J = N, 1, -1
- TEMP = X( JX )
- IX = JX
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*AP( KK )
- DO 120, K = KK - 1, KK - J + 1, -1
- IX = IX - INCX
- TEMP = TEMP + AP( K )*X( IX )
- 120 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*CONJG( AP( KK ) )
- DO 130, K = KK - 1, KK - J + 1, -1
- IX = IX - INCX
- TEMP = TEMP + CONJG( AP( K ) )*X( IX )
- 130 CONTINUE
- END IF
- X( JX ) = TEMP
- JX = JX - INCX
- KK = KK - J
- 140 CONTINUE
- END IF
- ELSE
- KK = 1
- IF( INCX.EQ.1 )THEN
- DO 170, J = 1, N
- TEMP = X( J )
- K = KK + 1
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*AP( KK )
- DO 150, I = J + 1, N
- TEMP = TEMP + AP( K )*X( I )
- K = K + 1
- 150 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*CONJG( AP( KK ) )
- DO 160, I = J + 1, N
- TEMP = TEMP + CONJG( AP( K ) )*X( I )
- K = K + 1
- 160 CONTINUE
- END IF
- X( J ) = TEMP
- KK = KK + ( N - J + 1 )
- 170 CONTINUE
- ELSE
- JX = KX
- DO 200, J = 1, N
- TEMP = X( JX )
- IX = JX
- IF( NOCONJ )THEN
- IF( NOUNIT )
- $ TEMP = TEMP*AP( KK )
- DO 180, K = KK + 1, KK + N - J
- IX = IX + INCX
- TEMP = TEMP + AP( K )*X( IX )
- 180 CONTINUE
- ELSE
- IF( NOUNIT )
- $ TEMP = TEMP*CONJG( AP( KK ) )
- DO 190, K = KK + 1, KK + N - J
- IX = IX + INCX
- TEMP = TEMP + CONJG( AP( K ) )*X( IX )
- 190 CONTINUE
- END IF
- X( JX ) = TEMP
- JX = JX + INCX
- KK = KK + ( N - J + 1 )
- 200 CONTINUE
- END IF
- END IF
- END IF
- *
- RETURN
- *
- * End of CTPMV .
- *
- END
-